溫始地送風(fēng)風(fēng)盤 —— 革新家居空氣享受的藝術(shù)品
溫始·未來生活新定義 —— 智能調(diào)濕新風(fēng)機(jī)
秋季舒適室內(nèi)感,五恒系統(tǒng)如何做到,?
大眾對(duì)五恒系統(tǒng)的常見問題解答?
五恒空調(diào)系統(tǒng)基本概要
如何締造一個(gè)舒適的室內(nèi)生態(tài)氣候系統(tǒng)
舒適室內(nèi)環(huán)境除濕的意義
暖通發(fā)展至今,怎樣選擇當(dāng)下產(chǎn)品
怎樣的空調(diào)系統(tǒng)ZUi值得你的選擇,?
五恒系統(tǒng)下的門窗藝術(shù):打造高效節(jié)能與舒適并存的居住空間
圖2是后端融合方法的流程圖,。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖,。圖5是前端融合模型的準(zhǔn)確率變化曲線圖,。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測(cè)混淆矩陣示意圖,。圖8是規(guī)范化前端融合模型的檢測(cè)混淆矩陣示意圖,。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖,。圖11是后端融合模型的準(zhǔn)確率變化曲線圖,。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測(cè)混淆矩陣示意圖,。圖14是規(guī)范化后端融合模型的檢測(cè)混淆矩陣示意圖,。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖,。圖17是中間融合模型的準(zhǔn)確率變化曲線圖,。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測(cè)混淆矩陣示意圖,。圖20是規(guī)范化中間融合模型的檢測(cè)混淆矩陣示意圖,。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚,、完整地描述,顯然,,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,,而不是全部的實(shí)施例?;诒景l(fā)明中的實(shí)施例,,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍,。安全審計(jì)發(fā)現(xiàn)日志模塊存在敏感信息明文存儲(chǔ)缺陷,。第三方軟件軟件測(cè)試
坐標(biāo)點(diǎn)(0,1)**一個(gè)完美的分類器,它將所有的樣本都正確分類,。roc曲線越接近左上角,,該分類器的性能越好。從圖9可以看出,,該方案的roc曲線非常接近左上角,,性能較優(yōu)。另外,,前端融合模型的auc值為,。(5)后端融合后端融合的架構(gòu)如圖10所示,,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,,隱藏層的***函數(shù)為relu,,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,,防止過擬合,,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40,。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,,20%的樣本驗(yàn)證,,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值,。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,,模型的對(duì)數(shù)損失變化曲線如圖12所示,。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率小幅提高,,訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,,選取epoch的較優(yōu)值為40,。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn),。軟件信息系統(tǒng)安全檢測(cè)機(jī)構(gòu)創(chuàng)新光譜分析技術(shù)賦能艾策檢測(cè),,實(shí)現(xiàn)食品藥品中微量有害物質(zhì)的超痕量檢測(cè)。
這種傳統(tǒng)方式幾乎不能檢測(cè)未知的新的惡意軟件種類,,能檢測(cè)的已知惡意軟件經(jīng)過簡(jiǎn)單加殼或混淆后又不能檢測(cè),,且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,,使用該方法也不能檢測(cè),。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,,在釋放到互聯(lián)網(wǎng)前,,都使用主流的反**軟件測(cè)試,確保主流的反**軟件無法識(shí)別這些惡意軟件,,使得當(dāng)前的反**軟件通常對(duì)它們無能為力,,只有在惡意軟件大規(guī)模傳染后,,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫(kù),,才能檢測(cè)這些惡意軟件,。基于數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)方法將可執(zhí)行文件表示成不同抽象層次的特征,,使用這些特征來訓(xùn)練分類模型,,可實(shí)現(xiàn)惡意軟件的智能檢測(cè),基于這些特征的檢測(cè)方法也取得了較高的準(zhǔn)確率,。受文本分類方法的啟發(fā),,研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測(cè)方法,這類方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,,包括pe文件頭,、代碼節(jié)、數(shù)據(jù)節(jié),、導(dǎo)入節(jié),、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,,大量具有語義的信息丟失,,很多語義信息提取不完整。此外,,基于字節(jié)碼n-grams的檢測(cè)方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù),。
特征之間存在部分重疊,但特征類型間存在著互補(bǔ),,融合這些不同抽象層次的特征可更好的識(shí)別軟件的真正性質(zhì),。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測(cè),,但惡意軟件很難同時(shí)偽造多個(gè)抽象層次的特征逃避檢測(cè),。基于該觀點(diǎn),,本發(fā)明實(shí)施例提出一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法,,以實(shí)現(xiàn)對(duì)惡意軟件的有效檢測(cè),提取了三種模態(tài)的特征(dll和api信息,、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),,提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,,有效提高惡意軟件檢測(cè)的準(zhǔn)確率和魯棒性,,具體步驟如下:步驟s1、提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息,、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,,生成軟件樣本的dll和api信息特征視圖,、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api,,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示,。對(duì)當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,并按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息,,得到該軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示,。從傳統(tǒng)到智能:艾策科技助力制造業(yè)升級(jí)之路。
針對(duì)cma和cnas第三方軟件測(cè)試機(jī)構(gòu)的資質(zhì),,客戶在確定合作前需要同時(shí)確認(rèn)資質(zhì)的有效期,,因?yàn)檐浖y(cè)試資質(zhì)都是有一定有效期的,如果軟件測(cè)試公司在業(yè)務(wù)開展的過程中有違規(guī)或者不受認(rèn)可的操作和行為,,有可能會(huì)被吊銷資質(zhì)執(zhí)照,,這一點(diǎn)需要特別注意。第三,,軟件測(cè)試機(jī)構(gòu)的資質(zhì)所涵蓋的業(yè)務(wù)參數(shù),,通常來講,,軟件測(cè)試報(bào)告一般針對(duì)軟件的八大參數(shù)進(jìn)行測(cè)試,,包括軟件功能測(cè)試、軟件性能測(cè)試,、軟件信息安全測(cè)試,、軟件兼容性測(cè)試、軟件可靠性測(cè)試,、軟件穩(wěn)定性測(cè)試,、軟件可移植測(cè)試、軟件易用性測(cè)試,。這幾個(gè)參數(shù)在cma或者cnas的官方網(wǎng)站都可以進(jìn)行查詢和確認(rèn)第四,,軟件測(cè)試機(jī)構(gòu)或者公司的本身信用背景,那么用戶可以去檢查一下公司的信用記錄,,是否有不良的投訴或者法律糾紛,,可以確保第三方軟件測(cè)試機(jī)構(gòu)出具的軟件測(cè)試報(bào)告的效力也沒有問題。那么,,總而言之,,找一家靠譜的第三方軟件測(cè)試機(jī)構(gòu)還是需要用戶從自己的軟件測(cè)試業(yè)務(wù)需求場(chǎng)景出發(fā),認(rèn)真仔細(xì)比較資質(zhì)許可的正規(guī)性,,然后可以完成愉快的合作和軟件測(cè)試報(bào)告的交付,。可靠性評(píng)估連續(xù)運(yùn)行72小時(shí)出現(xiàn)2次非致命錯(cuò)誤,。成都軟件測(cè)評(píng)服務(wù)機(jī)構(gòu)
數(shù)據(jù)驅(qū)動(dòng)決策:艾策科技如何提升企業(yè)競(jìng)爭(zhēng)力,。第三方軟件軟件測(cè)試
軟件測(cè)試技術(shù)測(cè)試分類編輯軟件測(cè)試的狹義論和廣義論——靜態(tài)和動(dòng)態(tài)的測(cè)試軟件測(cè)試技術(shù)軟件測(cè)試的辨證論——正向思維和反向思維軟件測(cè)試的風(fēng)險(xiǎn)論——測(cè)試是評(píng)估軟件測(cè)試的經(jīng)濟(jì)學(xué)觀點(diǎn)——為盈利而測(cè)試軟件測(cè)試的標(biāo)準(zhǔn)論——驗(yàn)證和確認(rèn)軟件測(cè)試技術(shù)測(cè)試工具編輯幾種常用的測(cè)試工具:1,、軟件錯(cuò)誤管理工具Bugzilla2、功能測(cè)試工具WinRunner3,、負(fù)載測(cè)試工具LoadRunner4,、測(cè)試管理工具TestDirector軟件測(cè)試技術(shù)同名圖書編輯軟件測(cè)試技術(shù)圖書1書名:軟件測(cè)試技術(shù)軟件測(cè)試技術(shù)作者:曲朝陽(yáng)出版社:**水利水電出版社出版時(shí)間:2006ISBN:97開本:16定價(jià):元內(nèi)容簡(jiǎn)介本書詳盡地闡述了軟件測(cè)試領(lǐng)域中的一些基本理論和實(shí)用技術(shù)。首先從軟件測(cè)試的基本原則,,以及常用的軟件測(cè)試技術(shù)入手,,介紹了與軟件測(cè)試領(lǐng)域相關(guān)的基礎(chǔ)知識(shí)。然后,,分別從單元測(cè)試,、集成測(cè)試和系統(tǒng)測(cè)試3個(gè)層面深入分析了如何選擇和設(shè)計(jì)有效的測(cè)試用例,制定合適的測(cè)試策略等主題,。**后,,討論了面向?qū)ο蟮能浖y(cè)試和軟件測(cè)試自動(dòng)化技術(shù)。附錄中還附錄了常見的軟件錯(cuò)誤,,供讀者參閱,。本書作為軟件測(cè)試的實(shí)際應(yīng)用參考書,除了力求突出基本知識(shí)和基本概念的表述外,,更注重軟件測(cè)試技術(shù)的運(yùn)用,。第三方軟件軟件測(cè)試